skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lehnert, Kerstin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Geochemistry is a data-driven discipline. Modern laboratories produce highly diverse data, and the recent exponential increase in data volumes is challenging established practices and capabilities for organizing, analyzing, preserving, and accessing these data. At the same time, sophisticated computational techniques, including machine learning, are increasingly applied to geochemical research questions, which require easy access to large volumes of high-quality, well-organized, and standardized data. Data management has been important since the beginning of geochemistry but has recently become a necessity for the discipline to thrive in the age of digitalization and artificial intelligence. This paper summarizes the landscape of geochemical databases, distinguishing different types of data systems based on their purpose, and their evolution in a historic context. We apply the life cycle model of geochemical data; explain the relevance of current standards, practices, and policies that determine the design of modern geochemical databases and data management; the ethics of data reuse such as data ownership, data attribution, and data citation; and finally create a vision for the future of geochemical databases: data being born digital, connected to agreed community standards, and contributing to global democratization of geochemical data. 
    more » « less
  2.  
    more » « less
  3. Physical samples and their associated (meta)data underpin scientific discoveries across disciplines, and can enable new science when appropriately archived. However, there are significant gaps in community practices and infrastructure that currently prevent accurate provenance tracking, reproducibility, and attribution. For the vast majority of samples, descriptive metadata is often sparse, inaccessible, or absent. Samples and associated (meta)data may also be scattered across numerous physical collections, data repositories, laboratories, data files, and papers with no clear linkages or provenance tracking as new information is generated over time. The Physical Samples Curation Cluster has therefore developed ‘A Scientific Author Guide for Publishing Open Research Using Physical Samples.’ This involved synthesizing existing practices, community feedback, and assessing real-world examples to identify community and infrastructure needs. We identified areas of work needed to enable authors to efficiently reference samples and related data, link related samples and data, and track their use. Our goal is to help improve the discoverability, interoperability, use of physical samples and associated (meta)data into the future. 
    more » « less
  4. Abstract Minerals are information-rich materials that offer researchers a glimpse into the evolution of planetary bodies. Thus, it is important to extract, analyze, and interpret this abundance of information to improve our understanding of the planetary bodies in our solar system and the role our planet’s geosphere played in the origin and evolution of life. Over the past several decades, data-driven efforts in mineralogy have seen a gradual increase. The development and application of data science and analytics methods to mineralogy, while extremely promising, has also been somewhat ad hoc in nature. To systematize and synthesize the direction of these efforts, we introduce the concept of “Mineral Informatics,” which is the next frontier for researchers working with mineral data. In this paper, we present our vision for Mineral Informatics and the X-Informatics underpinnings that led to its conception, as well as the needs, challenges, opportunities, and future directions of the field. The intention of this paper is not to create a new specific field or a sub-field as a separate silo, but to document the needs of researchers studying minerals in various contexts and fields of study, to demonstrate how the systemization and enhanced access to mineralogical data will increase cross- and interdisciplinary studies, and how data science and informatics methods are a key next step in integrative mineralogical studies. 
    more » « less
  5. Thanks to substantial support for biodiversity data mobilization in recent decades, billions of occurrence records are openly available, documenting life on Earth and enabling timely research, awareness raising, and policy-making. Initiatives across local to global scales have been separately funded to serve different, yet often overlapping audiences of data users, and have developed a variety of platforms and infrastructures to meet the needs of these audiences. The independent progress of biodiversity data providers has led to innovations as well as challenges for the community at large as we move towards connecting and linking a diversity of information from disparate sources as Digital Extended Specimens (DES). Recognizing a need for deeper and more frequent opportunities for communication and collaboration across the globe, an ad-hoc group of representatives of various international, national, and regional organizations have been meeting virtually since 2020 to provide a forum for updates, announcements, and shared progress. This group is provisionally named International Partners for the Digital Extended Specimen (IPDES), and is guided by these four concepts: Biodiversity, Connection, Knowledge and Agency. Participants in IPDES include representatives of the Global Biodiversity Information Facility (GBIF), Integrated Digitized Biocollections (iDigBio), American Institute of Biological Sciences (AIBS), Biodiversity Collections Network (BCoN), Natural Science Collections Alliance (NSCA), Distributed System of Scientific Collections (DiSSCo), Atlas of Living Australia (ALA), Biodiversity Information Standards (TDWG), Society for the Preservation of Natural History Collections (SPNHC), National Specimen Information Infrastructure of China (NSII), and South African National Biodiversity Institute (SANBI), as well as individuals involved with biodiversity informatics initiatives, natural science collections, museums, herbaria, and universities. Our global partners group strives to increase representation from around the globe as we aim to enable research that contributes to novel discoveries and addresses the societal challenges leading to the biodiversity crisis. Our overarching mission is to expand on the community-driven successes to connect biodiversity data and knowledge through coordination of a globally integrated network of stakeholders to enable an extensible technical and social infrastructure of data, tools, and working practices in support of our vision. The main work of our group thus far includes publishing a paper on the Digital Extended Specimen (Hardisty et al. 2022), organizing and hosting an array of activities at conferences, and asynchronous online work and forum-based exchanges. We aim to advance discussion on topics of broad interest to our community such as social and technical capacity building, broadening participation, expanding social and data networks, improving data models and building a backbone for the DES, and identifying international funding solutions. This presentation will highlight some of these activities and detail progress towards a roadmap for the development of the human network and technical infrastructure necessary to support the DES. It provides an opportunity for feedback from and engagement by stakeholder communities such as TDWG and other initiatives with a focus on data standards and biodiversity informatics, as we solidify our plans for the future in support of integrated and interconnected biodiversity data and credit for those doing the work. 
    more » « less
  6. Tephra is a unique volcanic product that plays an unparalleled role in understanding past eruptions, the long-term behavior of volcanoes, and the effects of volcanism on climate and the environment. Tephra deposits also provide spatially widespread, extremely high-resolution time-stratigraphic markers across a range of sedimentary settings and are used by many disciplines (e.g. volcanology, seismotectonics, climate science, archaeology, ecology, public health and ash impact assessment). In the last two decades, tephra studies have become more interdisciplinary in nature but are challenged by a lack of standardization that often prevents comparison amongst various regions and across disciplines. To address this challenge, the global tephra community has come together through a series of workshops to establish best practice recommendations for tephra studies from sample collection through analysis and data reporting. This new standardized framework will facilitate consistent tephra documentation and parametrization, foster interdisciplinary communication, and improve effectiveness of data sharing among diverse communities of researchers. One specific goal is to use the best practice guidelines to inform digital tool and data repository development. Here we report on 1) a new set of templates for tephra sample documentation, geochemical method documentation and data reporting using recommended best- practice data and metadata fields, 2) a new tephra module added to StraboSpot, an open source geologic mapping and data- recording multi-platform software application, and 3) new implementations and cross-mapping of metadata requirements at SESAR (System for Earth Sample Registration) and EarthChem. Addition of tephra-specific fields to StraboSpot enables users to consistently collect and report essential tephra data in the field which is then automatically saved to an online data repository. A new tephra portal on the EarthChem website will allow users to follow simple workflows to register tephra samples at SESAR and submit microanalytical data to EarthChem. 
    more » « less